Jaime Wisniak* and Abraham Tamir
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

The vapor-liquid equilibria behavior of two ternary mixtures, water-formic acid-acetic acid and water-acetic acid-propionic acid, was studied experimentally in a Dvorak and Boublik recirculation still at 760 mmHg . A ternary saddle point azeotrope exists in the first mixture which boils at $107.0^{\circ} \mathrm{C}$ and contains 36.3 mole \% water, 46.9 mole \% formic acid, and 16.8 mole \% acetic acid. No ternary azeotrope exists in the second mixture. A thermodynamic model suggested in the past, which accounts for nonideal gas behavior and association effects in a multicomponent mixture, was applied for analysis of the data.

In previous investigations on ternary systems containing fatty acids we studied experimentally the vapor-liquid equilibria properties of the systems formic acid-acetic acid-propionic acid (16) and water-formic acid-propionic acid (17). No azeotrope was found at 760 mmHg in the first case, whereas a ternary saddle point azeotrope, boiling at $107.5^{\circ} \mathrm{C}$ and containing 42 mole \% water, 54 mole \% formic acid, and 4 mole \% propionic acid, was revealed in the second system. This information is very useful in regards to the possibility of separating the acids by distillation of their mixture (which is obtained by oxidation of paraffins).

As a continuation of the above work, we studied the vaporliquid equilibria behavior of water-formic acid-acetic acid and water-acetic acid-propionic acid. The fatty acids are known to exhibit autoassociation and heteroassociation among the species, and reliable data are available to account for these effects. Hence, the above systems are also suitable to test the thermodynamic model we suggested (16, 17) for computing liquid overall activity coefficients. The values of the latter are important for checking the consistency of the measurements and testing correlations for liquid activity coefficients.

Experimental Section

Purity of Materials. Analytical grades of formic, acetic, and propionic acids purchased from Merck, Fluka, and B.D.H. were used. Gas chromatograph analysis showed some water in the acids on the order of 0.025 mole fraction. However, since the experimental systems investigated contain water, no attempt was made for further purification of the acids. Physical properties of the pure components appear in Table I where distilled water was used.

Apparatus and Procedure. An all-glass modified Dvorak and Boublik recirculation still (5) was used in the equilibrium determinations. The experimental features have been previously described (18). All analyses were carried out by gas chromatography on a Packard-Becker Model 417 apparatus provided with a thermal conductivity detector and an Autolab Minigrator type of electronic integrator. The column was 200 cm long and 0.32 cm in diameter, packed with Chromosorb 101, and operated at $175^{\circ} \mathrm{C}$ for water-acetic acid-propionic acid and at $150^{\circ} \mathrm{C}$ for water-formic acid-acetic acid. Injector temperature was 240 ${ }^{\circ} \mathrm{C}$ and the detector operated at 150 mA and $250^{\circ} \mathrm{C}$. Concentration measurements were generally accurate to ± 0.002 mole fraction units in the system water-formic acid-acetic acid,
whereas in water-acetic acid-propionic acid the accuracy was ± 0.0025. Boiling temperatures were measured with a Hew-lett-Packard quartz thermometer, Model 2801 A, with an accuracy of $\pm 0.0001^{\circ} \mathrm{C}$. The boiling temperatures were stable within $\pm 0.02^{\circ} \mathrm{C}$.

Results and Discussion

The temperature-concentration measurements at 760 mmHg for the ternary systems water-formic acid-acetic acid and water-acetic acid-propionic acid are reported in Tables II and III. In the following we designate the species in a ternary system by A, B, and C , respectively. A corresponding to the most volatile component. Specie B and C undergo dimerization between their monomers, namely, $B_{1}+B_{1} \rightleftarrows B_{2}$ and $C_{1}+C_{1} \rightleftarrows C_{2}$ where by species we refer to a mixture of monomer + dimer, namely, B $=B_{1}+B_{2}$. In addition, species B and C react according to B_{1} $+C_{1} \rightleftarrows B C$ to form the heterodimer $B C$ whereas species A (water) is assumed passive. This is due to the lack of data concerning the association constants of water with the other species and consistent with the views of other publications in the area of fatty acid-water equilibria (15,19). The liquid overall activity coefficients, γ_{A}, γ_{B}, and γ_{C}, appearing in F_{A}, F_{B}, and $F_{C}(e q 2)$ were calculated from the simultaneous solution of the following three nonlinear equations derived elsewhere (17)

$$
F_{\mathrm{A}}-y_{\mathrm{A}}\left[P+K_{\mathrm{BB}} \dot{\Phi}_{\mathrm{B}} F_{\mathrm{B}}^{2}+K_{\mathrm{CC}} \hat{\Phi}_{\mathrm{C}} F_{\mathrm{C}}^{2}+\bar{K}_{\mathrm{BC}} F_{\mathrm{B}} F_{\mathrm{C}}\right]=0
$$

$$
\begin{align*}
\left(2-y_{\mathrm{B}}\right) K_{\mathrm{BB}} \dot{\Phi}_{\mathrm{B}} F_{\mathrm{B}}^{2}+F_{\mathrm{B}}[1 & \left.+\left(1-y_{\mathrm{B}}\right) \bar{K}_{\mathrm{BC}} F_{\mathrm{C}}\right] \tag{1.1}\\
& -y_{\mathrm{B}}\left[P+K_{\mathrm{CC}} \hat{\Phi}_{\mathrm{C}} F_{\mathrm{C}}^{2}\right]=0 \tag{1.2}
\end{align*}
$$

$$
\begin{align*}
\left(2-y_{\mathrm{C}}\right) K_{\mathrm{CC}} \dot{\Phi}_{\mathrm{C}} F_{\mathrm{C}}^{2}+F_{\mathrm{C}}[1 & \left.+\left(1-y_{\mathrm{C}}\right) \bar{K}_{\mathrm{BC}} F_{\mathrm{B}}\right] \\
& -y_{\mathrm{C}}\left[P+K_{\mathrm{BB}} \hat{\Phi}_{\mathrm{B}} F_{\mathrm{B}}^{2}\right]=0 \tag{1.3}
\end{align*}
$$

where for $i=\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
\begin{gather*}
F_{i}=\gamma_{i} x_{i} P_{i 1}{ }^{0} / E_{i} \tag{2}\\
E_{i}=\exp \left[\frac{\left(P-P_{i_{1}}{ }^{0}\right)\left(b_{i}-V_{i}^{L}\right)}{R T}\right] \tag{3}\\
\hat{\Phi}_{i}=\exp \left[\frac{b_{i} P}{R T}\right] \tag{4}
\end{gather*}
$$

and for $i=\mathrm{B}, \mathrm{C}$

$$
\begin{equation*}
P_{i,}^{0}=P_{i}^{0}\left(\frac{-1+\left(1+4 K_{i i} P_{i}^{0} \exp \left[\frac{b_{i} P_{i}^{0}}{R T}\right]\right)^{1 / 2}}{2 K_{l i} P_{i}^{0} \exp \left[\frac{b_{i} P_{i}^{0}}{R T}\right]}\right) \tag{5}
\end{equation*}
$$

Table I. Physical Constants of Compounds at $25^{\circ} \mathrm{C}$

Compound	Density, $\mathrm{g} \mathrm{cm}^{-3}$	RI^{b}
Formic acid	1.2136	1.3690
	1.2139^{a}	1.3693^{a}
Acetic acid	1.0435	1.3696
	1.0437^{a}	1.3698^{a}
Propionic acid	0.9879^{a}	1.3837
	0.9880^{a}	1.3843^{a}

[^0]| Temp, ${ }^{\circ} \mathrm{C}$ | | Liquid compn | | | Vapor compn | | | Activity coeff | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obsd | Calcd | x_{1} | x_{2} | x_{3} | y_{1} | y_{2} | y_{3} | γ_{1} | γ_{2} | γ_{3} |
| 101.09 | 100.68 | 0.957 | 0.030 | 0.013 | 0.975 | 0.016 | 0.009 | 0.98203 | 0.97789 | 2.61472 |
| 102.03 | 101.81 | 0.855 | 0.039 | 0.106 | 0.889 | 0.029 | 0.082 | 0.99205 | 0.98764 | 1.92800 |
| 102.19 | 101.68 | 0.900 | 0.076 | 0.024 | 0.943 | 0.040 | 0.017 | 0.97642 | 0.84488 | 2.15970 |
| 103.06 | 102.74 | 0.759 | 0.040 | 0.201 | 0.837 | 0.027 | 0.136 | 1.03329 | 0.78754 | 1.45552 |
| 103.10 | 102.81 | 0.827 | 0.099 | 0.074 | 0.873 | 0.068 | 0.059 | 0.97117 | 0.90554 | 1.87066 |
| 103.24 | 104.24 | 0.140 | 0.818 | 0.042 | 0.095 | 0.866 | 0.039 | 0.86495 | 1.00693 | 1.06797 |
| 103.25 | 103.34 | 0.777 | 0.089 | 0.134 | 0.792 | 0.081 | 0.127 | 0.96079 | 1.04323 | 1.88647 |
| 103.73 | 102.89 | 0.831 | 0.150 | 0.019 | 0.895 | 0.090 | 0.015 | 0.95883 | 0.85138 | 1.93651 |
| 104.00 | 104.85 | 0.175 | 0.761 | 0.064 | 0.125 | 0.816 | 0.059 | 0.87027 | 1.00587 | 1.06276 |
| 104.06 | 104.21 | 0.709 | 0.095 | 0.196 | 0.788 | 0.064 | 0.148 | 1.02090 | 0.74201 | 1.46656 |
| 104.14 | 103.04 | 0.822 | 0.161 | 0.017 | 0.894 | 0.093 | 0.013 | 0.95427 | 0.81186 | 1.85165 |
| 104.41 | 104.26 | 0.739 | 0.144 | 0.117 | 0.808 | 0.099 | 0.093 | 0.98055 | 0.80065 | 1.58272 |
| 104.61 | 104.50 | 0.726 | 0.159 | 0.115 | 0.800 | 0.108 | 0.092 | 0.98335 | 0.78389 | 1.56404 |
| 104.62 | 104.66 | 0.641 | 0.073 | 0.286 | 0.751 | 0.041 | 0.208 | 1.07291 | 0.57236 | 1.32170 |
| 104.87 | 105.32 | 0.210 | 0.691 | 0.099 | 0.164 | 0.745 | 0.091 | 0.90343 | 0.99526 | 1.06862 |
| 105.07 | 105.22 | 0.603 | 0.081 | 0.316 | 0.708 | 0.056 | 0.236 | 1.07625 | 0.67612 | 1.27957 |
| 105.12 | 105.30 | 0.658 | 0.149 | 0.193 | 0.741 | 0.108 | 0.151 | 1.01119 | 0.76241 | 1.39218 |
| 105.22 | 104.87 | 0.162 | 0.649 | 0.189 | 0.136 | 0.691 | 0.173 | 0.98565 | 0.96686 | 1.07859 |
| 105.45 | 105.63 | 0.236 | 0.637 | 0.127 | 0.186 | 0.697 | 0.117 | 0.88401 | 0.99823 | 1.07801 |
| 105.51 | 105.86 | 0.609 | 0.148 | 0.243 | 0.696 | 0.113 | 0.191 | 1.03141 | 0.76131 | 1.31817 |
| 105.53 | 105.42 | 0.578 | 0.075 | 0.347 | 0.689 | 0.054 | 0.257 | 1.08392 | 0.68477 | 1.23187 |
| 105.61 | 104.63 | 0.723 | 0.248 | 0.029 | 0.792 | 0.181 | 0.027 | 0.93742 | 0.86304 | 1.72816 |
| 105.61 | 105.09 | 0.692 | 0.226 | 0.082 | 0.757 | 0.170 | 0.073 | 0.95176 | 0.83684 | 1.58401 |
| 106.07 | 106.53 | 0.483 | 0.074 | 0.443 | 0.642 | 0.053 | 0.305 | 1.21086 | 0.64906 | 1.08431 |
| 106.07 | 106.02 | 0.524 | 0.073 | 0.403 | 0.642 | 0.053 | 0.305 | 1.11611 | 0.65795 | 1.19193 |
| 106.17 | 105.42 | 0.667 | 0.273 | 0.060 | 0.693 | 0.249 | 0.058 | 0.90196 | 0.97017 | 1.54920 |
| 106.19 | 106.15 | 0.606 | 0.238 | 0.156 | 0.659 | 0.203 | 0.138 | 0.96444 | 0.85474 | 1.39564 |
| 106.20 | 106.40 | 0.576 | 0.331 | 0.093 | 0.611 | 0.298 | 0.091 | 0.95056 | 0.90378 | 1.44893 |
| 106.32 | 106.22 | 0.599 | 0.262 | 0.139 | 0.648 | 0.225 | 0.127 | 0.95729 | 0.85936 | 1.41739 |
| 106.55 | 106.77 | 0.543 | 0.241 | 0.216 | 0.604 | 0.206 | 0.190 | 0.99935 | 0.81227 | 1.31960 |
| 106.66 | 106.82 | 0.534 | 0.264 | 0.202 | 0.583 | 0.236 | 0.181 | 0.98366 | 0.84626 | 1.31473 |
| 106.72 | 107.19 | 0.494 | 0.176 | 0.330 | 0.574 | 0.150 | 0.276 | 1.05903 | 0.76816 | 1.23317 |
| 106.87 | 106.76 | 0.454 | 0.065 | 0.481 | 0.583 | 0.047 | 0.370 | 1.16912 | 0.61921 | 1.13886 |
| 106.93 | 107.24 | 0.463 | 0.118 | 0.419 | 0.574 | 0.093 | 0.333 | 1.12713 | 0.68703 | 1.16927 |
| 106.95 | 106.59 | 0.551 | 0.344 | 0.105 | 0.577 | 0.320 | 0.103 | 0.92628 | 0.90208 | 1.39348 |
| 106.95 | 106.96 | 0.504 | 0.308 | 0.188 | 0.546 | 0.286 | 0.168 | 0.97810 | 0.86960 | 1.26080 |
| 106.97 | 106.40 | 0.579 | 0.367 | 0.054 | 0.609 | 0.337 | 0.054 | 0.91238 | 0.91831 | 1.43630 |
| 106.99 | 106.91 | 0.437 | 0.061 | 0.502 | 0.567 | 0.049 | 0.384 | 1.18515 | 0.68099 | 1.11780 |
| 107.00 | 107.41 | 0.473 | 0.199 | 0.328 | 0.546 | 0.175 | 0.279 | 1.05350 | 0.78392 | 1.22245 |
| 107.04 | 106.90 | 0.446 | 0.068 | 0.486 | 0.571 | 0.051 | 0.378 | 1.16488 | 0.63724 | 1.13846 |
| 107.10 | 106.97 | 0.442 | 0.455 | 0.103 | 0.429 | 0.464 | 0.107 | 0.90661 | 0.93953 | 1.31965 |
| 107.10 | 107.46 | 0.466 | 0.213 | 0.321 | 0.531 | 0.192 | 0.277 | 1.04230 | 0.80102 | 1.22458 |
| 107.10 | 106.91 | 0.493 | 0.362 | 0.145 | 0.513 | 0.346 | 0.141 | 0.94323 | 0.89270 | 1.32350 |
| 107.14 | 106.96 | 0.404 | 0.426 | 0.170 | 0.409 | 0.428 | 0.163 | 0.96020 | 0.90864 | 1.22516 |
| 107.20 | 107.11 | 0.445 | 0.359 | 0.196 | 0.469 | 0.343 | 0.188 | 0.97524 | 0.86751 | 1.28027 |
| 107.25 | 106.96 | 0.425 | 0.054 | 0.521 | 0.555 | 0.043 | 0.402 | 1.18918 | 0.66549 | 1.11265 |
| 107.28 | 107.15 | 0.495 | 0.482 | 0.023 | 0.473 | 0.503 | 0.024 | 0.85940 | 0.98672 | 1.31590 |
| 107.40 | 107.44 | 0.420 | 0.309 | 0.271 | 0.431 | 0.328 | 0.241 | 0.96455 | 0.93729 | 1.16967 |
| 107.40 | 107.29 | 0.376 | 0.362 | 0.262 | 0.396 | 0.362 | 0.242 | 1.00560 | 0.87855 | 1.19120 |
| 107.53 | 106.83 | 0.219 | 0.436 | 0.345 | 0.216 | 0.482 | 0.302 | 1.03204 | 0.94230 | 1.05399 |
| 107.61 | 107.93 | 0.414 | 0.195 | 0.391 | 0.487 | 0.181 | 0.332 | 1.08178 | 0.79362 | 1.16625 |
| 107.65 | 107.83 | 0.406 | 0.114 | 0.480 | 0.521 | 0.093 | 0.386 | 1.16705 | 0.68149 | 1.12833 |
| 107.79 | 108.08 | 0.382 | 0.229 | 0.389 | 0.443 | 0.221 | 0.336 | 1.08042 | 0.81852 | 1.15353 |
| 108.08 | 107.76 | 0.367 | 0.055 | 0.578 | 0.499 | 0.043 | 0.458 | 1.23593 | 0.62688 | 1.08806 |
| 108.13 | 108.43 | 0.361 | 0.167 | 0.472 | 0.451 | 0.154 | 0.395 | 1.15204 | 0.75935 | 1.12034 |
| 108.16 | 108.21 | 0.251 | 0.311 | 0.438 | 0.283 | 0.329 | 0.388 | 1.12434 | 0.87234 | 1.09920 |
| 108.34 | 108.56 | 0.347 | 0.149 | 0.504 | 0.440 | 0.137 | 0.423 | 1.16905 | 0.74564 | 1.11430 |
| 108.53 | 108.10 | 0.347 | 0.061 | 0.592 | 0.476 | 0.047 | 0.477 | 1.24115 | 0.60810 | 1.08387 |
| 108.61 | 108.70 | 0.330 | 0.172 | 0.498 | 0.414 | 0.163 | 0.423 | 1.159 02 | 0.76479 | 1.10816 |
| 108.66 | 108.65 | 0.328 | 0.101 | 0.571 | 0.440 | 0.094 | 0.466 | 1.22688 | 0.73732 | 1.07760 |
| 109.15 | 108.95 | 0.305 | 0.104 | 0.591 | 0.421 | 0.094 | 0.485 | 1.25303 | 0.70479 | 1.06437 |
| 109.15 | 109.17 | 0.280 | 0.173 | 0.547 | 0.366 | 0.166 | 0.468 | 1.21608 | 0.75506 | 1.08474 |
| 109.27 | 109.29 | 0.278 | 0.142 | 0.580 | 0.376 | 0.137 | 0.487 | 1.24888 | 0.75197 | 1.06706 |
| 109.58 | 109.38 | 0.270 | 0.142 | 0.588 | 0.358 | 0.138 | 0.504 | 1.22294 | 0.74939 | 1.07589 |
| 110.00 | 109.57 | 0.254 | 0.086 | 0.660 | 0.367 | 0.078 | 0.555 | 1.31216 | 0.68099 | 1.05086 |
| 110.41 | 110.00 | 0.223 | 0.125 | 0.652 | 0.321 | 0.120 | 0.559 | 1.31805 | 0.71765 | 1.04696 |
| 110.80 | 110.26 | 0.208 | 0.104 | 0.688 | 0.300 | 0.111 | 0.589 | 1.31927 | 0.78625 | 1.03147 |

Table III. Ternary Vapor-Liquid Equilibrium Data for Water (1)-Acetic Acid (2)-Propionic Acid (3) at $760 \mathbf{m m H g}$

Temp, ${ }^{\circ} \mathrm{C}$		Liquid compn			Vapor compn			Activity coeff		
Obsd	Calcd	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	γ_{1}	γ_{2}	$\gamma 3$
100.81	100.85	0.858	0.060	0.082	0.921	0.034	0.045	1.06092	1.56497	2.59274
100.60	100.58	0.877	0.040	0.083	0.928	0.024	0.048	1.05147	1.71095	2.82203
100.85	100.87	0.859	0.063	0.078	0.924	0.034	0.042	1.06065	1.50532	2.56860
101.03	100.90	0.827	0.045	0.128	0.920	0.022	0.058	1.09113	1.33870	2.12116
101.04	100.99	0.849	0.070	0.081	0.902	0.063	0.035	1.04782	2.31860	1.90471
101.08	101.09	0.832	0.067	0.101	0.916	0.035	0.049	1.07931	1.40794	2.23548
101.15	101.04	0.814	0.048	0.138	0.906	0.027	0.067	1.09180	1.46527	2.16276
101.48	101.33	0.806	0.070	0.124	0.855	0.053	0.092	1.04657	1.71359	2.87393
101.50	101.25	0.834	0.136	0.030	0.907	0.076	0.017	1.05339	1.44463	2.50217
101.56	101.22	0.832	0.151	0.017	0.008	. 083	0.009	1.05451	1.42285	2.34022
101.62	101.28	0.784	0.046	0.170	0.907	0.022	0.071	1.11549	1.23564	1.84229
101.68	101.68	0.789	0.096	0.115	0.874	0.060	0.066	1.07778	1.47023	2.30773
101.76	i01.72	0.785	0.095	0.120	0.896	0.050	0.054	1.09910	1.30977	1.91209
101.95	101.73	0.789	0.166	0.045	0.880	0.096	0.024	1.07267	1.37033	2.15789
102.08	102.00	0.772	0.137	0.091	0.877	0.077	0.046	1.08850	1.31864	2.02443
102.13	101.85	0.762	0.076	0.162	0.882	0.040	0.078	1.10502	1.25049	1.95201
102.16	102.05	0.743	0.071	0.186	0.892	0.033	0.075	1.14103	1.13350	1.67712
102.18	102.08	0.766	0.157	0.077	0.869	0.090	0.041	1.08620	1.31578	2.08616
102.19	101.60	0.791	0.187	0.022	0.838	0.146	0.016	1.02563	1.67563	2.66679
102.65	102.16	0.712	0.044	0.244	0.887	0.021	0.092	1.16536	1.13543	1.52770
102.67	102.59	0.731	0.167	0.102	0.849	0.097	0.054	1.10050	1.26166	1.96109
102.70	102.31	0.707	0.049	0.244	0.885	0.022	0.093	1.16966	1.06123	1.53421
102.72	102.78	0.701	0.081	0.218	0.870	0.040	0.090	1.16488	1.12359	1.60049
102.80	102.62	0.724	0.197	0.079	0.848	0.113	0.039	1.10516	1.23919	1.81809
102.89	102.86	0.713	0.183	0.104	0.849	0.102	0.049	1.11946	1.20443	1.73505
103.07	102.39	0.717	0.252	0.031	0.827	0.156	0.017	1.08642	1.27578	1.92615
103.18	102.78	0.704	0.232	0.064	0.828	0.138	0.034	1.10296	1.22552	1.86472
103.20	102.55	0.709	0.251	0.040	0.824	0.154	0.022	1.09082	1.25410	1.91539
103.32	103.37	0.687	0.157	0.156	0.845	0.085	0.070	1.14027	1.14967	1.62182
103.50	103.53	0.661	0.086	0.253	0.858	0.043	0.099	1.18989	1.08740	1.44700
103.51	103.57	0.676	0.147	0.177	0.835	0.083	0.082	1.14151	1.17109	1.63498
103.70	103.76	0.666	0.148	0.186	0.841	0.077	0.082	1.15653	1.08694	1.56596
103.98	103.16	0.654	0.308	0.038	0.783	0.198	0.019	1.11041	1.20927	1.60017
104.09	103.65	0.643	0.282	0.075	0.786	0.174	0.040	1.12781	1.16337	1.71011
104.25	103.89	0.636	0.273	0.091	0.779	0.173	0.048	1.12673	1.17886	1.66817
104.60	104.72	0.614	0.224	0.162	0.795	0.128	0.077	1.16869	1.08057	1.52579
104.61	104.41	0.616	0.265	0.119	0.770	0.168	0.062	1.13921	1.15589	1.61348
104.80	105.11	0.603	0.157	0.240	0.807	0.086	0.107	1.19366	1.05153	1.45151
105.20	104.87	0.592	0.079	0.329	0.827	0.040	0.133	1.21903	0.99731	1.34799
105.45	104.91	0.559	0.359	0.082	0.723	0.233	0.044	1.16648	1.09681	1.53771
105.50	105.71	0.558	0.283	0.159	0.750	0.170	0.072	1.20515	1.05767	1.35089
105.85	106.01	0.553	0.261	0.186	0.748	0.161	0.091	1.18989	1.06487	1.42976
106.10	106.43	0.535	0.268	0.197	0.745	0.160	0.095	1.21562	1.02143	1.39574
106.14	106.07	0.530	0.324	0.146	0.722	0.204	0.074	1.19907	1.04784	1.42743
106.85	106.03	0.476	0.452	0.072	0.647	0.315	0.038	1.28562	1.06318	1.36139
107.26	107.73	0.495	0.154	0.351	0.764	0.087	0.149	1.28293	0.96631	1.22349
107.45	107.13	0.455	0.417	0.128	0.647	0.284	0.069	1.23435	0.02652	1.37138
107.67	108.33	0.468	0.263	0.269	0.717	0.156	0.127	1.27963	0.95119	1.27546
108.10	108.78	0.455	0.249	0.296	0.709	0.153	0.138	1.28613	0.96842	1.23648
108.90	108.48	0.386	0.477	0.137	0.581	0.348	0.071	1.27926	1.01668	1.21501
109.41	109.81	0.380	0.395	0.225	0.619	0.266	0.115	1.33550	0.95417	1.21589
111.15	111.66	0.311	0.437	0.252	0.552	0.319	0.129	1.41176	0.95505	1.11996
112.62	113.23	0.306	0.235	0.459	0.632	0.145	0.223	1.50338	0.82759	1.08369
113.68	112.60	0.163	0.753	0.084	0.310	0.642	0.048	1.57136	0.96085	1.07242
113.75	114.35	0.253	0.391	0.356	0.520	0.282	0.198	1.51451	0.88024	1.12731
114.00	114.83	0.241	0.389	0.370	0.511	0.291	0.198	1.55555	0.90422	1.07360
114.78	115.42	0.224	0.398	0.378	0.495	0.305	0.200	1.58994	0.90478	1.03483
114.78	115.35	0.208	0.464	0.328	0.462	0.363	0.175	1.62471	0.90961	1.02811
115.75	115.12	0.136	0.689	0.175	0.288	0.608	0.104	1.64528	0.95030	1.06007
116.80	116.32	0.216	0.207	0.577	0.567	0.137	0.296	1.70167	0.78077	0.99566
117.61	117.56	0.180	0.368	0.452	0.455	0.283	0.262	1.68037	0.84340	1.04545
117.60	116.96	0.120	0.635	0.245	0.280	0.568	0.152	1.70506	0.92777	1.06070
118.50	117.05	0.188	0.133	0.679	0.563	0.090	0.347	1.83446	0.76991	0.95209
120.35	118.90	0.160	0.186	0.654	0.489	0.139	0.372	1.81792	0.78854	0.97904
123.65	122.28	0.084	0.420	0.496	0.240	0.409	0.351	1.72584	0.89157	1.05148

Table IV. Constants in Equations 8 and 9

Species	Constants				
	$\alpha_{i}{ }^{a}$	βi^{a}	$\delta_{i}{ }^{\text {a }}$	ϵ_{i}	ω_{i}
Water	7.96681	1668.21	228.0		
Formic acid	7.3779	1563.28	247.06	$-10.743^{\text {b }}$	3083.0
Acetic acid	14.39756	9399.86	698.0	-10.4205^{c}	3166.0
Propionic acid	7.5476	1617.06	205.67	-10.8340°	3316.0
Formic acidpropionic acid				$-10.3558^{\text {d }}$	3193.

in addition

$$
\begin{gather*}
\bar{K}_{\mathrm{BC}}=K_{\mathrm{BC}} \hat{\Phi}_{\mathrm{B}} \hat{\Phi}_{\mathrm{C}} / \hat{\Phi}_{\mathrm{BC}} \tag{6}\\
\hat{\Phi}_{\mathrm{BC}}=\exp \left[\frac{\left(b_{\mathrm{B}}^{1 / 3}+b_{\mathrm{C}}{ }^{1 / 3}\right)^{3} P}{8 R T}\right] \tag{7}
\end{gather*}
$$

For ideal gaseous mixtures and low pressures, the values of E_{i} and the fugacity coefficients $\dot{\Phi}$ approach unity. For the calculation of the vapor pressure of the pure species, $P_{i}{ }^{0}$, and association constants, $K_{l i}$, the following equations were employed

$$
\begin{array}{cc}
\log P_{i}^{0}=\alpha_{i}-\beta_{i} /\left(t+\delta_{i}\right) & i=\mathrm{A}, \mathrm{~B}, \mathrm{C} \\
\log K_{i i}=\epsilon_{i}+\omega_{i} / T & i=\mathrm{B}, \mathrm{C} \tag{9}
\end{array}
$$

The constants $\alpha_{i}, \beta_{i}, \delta_{i}, \epsilon_{i}$, and ω_{i} appear in Table IV where $P_{i}{ }^{0}$ is in mmHg and $K_{i i}$ is in mmHg^{-1}. The heterodimerization constant K_{BC} for formic acid-propionic acid was calculated by an equation similar to eq 9 where the constants are given in Table IV. For the other heterodimers of the acids, the heterodimerization constant was calculated as twice the geometrical mean of the association constant for the pure species (3). The data required for computing the fugacity coefficients were taken from ref 4 and 12.

The data appearing in Tables II and III were tested by the McDermott-Ellis method (8) to reject those points that were clearly thermodynamically inconsistent.

According to this test, two experimental points a and b are thermodynamically consistent if the following condition is fulfilled:

$$
\begin{equation*}
D<D_{\max } \tag{10}
\end{equation*}
$$

The local deviation D is given by (14)

$$
\begin{equation*}
D=\sum_{i=1}^{n}\left(x_{i a}+x_{i b}\right)\left(\ln \gamma_{i b}-\ln \gamma_{i a}\right) \tag{11}
\end{equation*}
$$

McDermott (8) recommended the use of a fixed value of 0.01 for $D_{\text {max }}$ if the accuracy in the measurement of the vapor and the liquid mole fraction is within ± 0.001. However, the value of 0.01 is in error and should be 0.001 (9). In principle, the local maximum deviation, $D_{\text {max }}$, due to experimental errors, is not constant and can be derived by noting from eq 11 that

$$
\begin{equation*}
D=D\left(x_{i a}, x_{i b}, \gamma_{i a}, \gamma_{i b}\right) \tag{12}
\end{equation*}
$$

and analyzing the total differential $\mathrm{d} D$. The effect of temperature and pressure is introduced by considering eq 12 for γ_{i} in the work of Chang and $\mathrm{Lu}(6)$ which yields that

$$
\begin{equation*}
d \ln \gamma_{i}=d \ln P-d \ln P_{i}^{0}+d \ln y_{i}-d \ln x_{i} \tag{13}
\end{equation*}
$$

The dependence of P_{i}^{0} on temperature is taken according to eq 8. Errors in measurements of vapor and liquid concentrations are of the same magnitude. The final expression for the local maximum deviation reads

$$
\begin{align*}
D_{\max } & =\sum_{i=1}^{n}\left(x_{i a}+x_{i b}\right)\left(\frac{1}{x_{i a}}+\frac{1}{y_{i a}}+\frac{1}{x_{i b}}+\frac{1}{y_{i b}}\right) \Delta x \\
& +2 \sum_{i=1}^{n}\left|\ln \gamma_{i b}-\ln \gamma_{i a}\right| \Delta x+\sum_{i=1}^{n}\left(x_{i a}+x_{i b}\right) \frac{\Delta P}{P} \\
& +\sum_{i=1}^{n}\left(x_{i a}+x_{i b}\right) \beta_{i}\left(\frac{1}{\left[t_{a}+\delta_{i}\right]^{2}}+\frac{1}{\left[t_{b}+\delta_{i}\right]^{2}}\right) \Delta t \tag{14}
\end{align*}
$$

It can be shown that eq 14 is equivalent to eq 22 in ref 6 . The last term in eq 22 in ref 6 which is spelled out must be zero. It should be emphasized that, for the associating species, y_{i} in eq 14 should be replaced by η_{i}, which is a mole fraction of the monomer of species i in the vapor phase. This arises from vaporliquid equilibria considerations detailed in ref 16 and 17. In the present study, the errors in the measurements were estimated to be $\Delta P= \pm 2 \mathrm{mmHg}$ and $\Delta t= \pm 0.02^{\circ} \mathrm{C}$, where $\Delta x=0.002$ mole fraction units. It was found that the first term in eq 14 which accounts for the error in the concentration measurements was usually the dominant one.

The correlation of the overall activity coefficients in the liquid, which were computed by eq 1 and reported in Tables II and III, was made according to the following Redlich-Kister equation (14):

$$
\begin{align*}
& \ln \gamma_{1}=x_{2} x_{3}\left[\left(B_{12}+B_{13}-B_{23}\right)+C_{12}\left(2 x_{1}-x_{2}\right)+C_{13}\left(2 x_{1}\right.\right. \\
& \left.\quad-x_{3}\right)+2 C_{23}\left(x_{3}-x_{2}\right)+D_{12}\left(x_{1}-x_{2}\right)\left(3 x_{1}-x_{2}\right) \\
& \left.+D_{13}\left(x_{1}-x_{3}\right)\left(3 x_{1}-x_{3}\right)-3 D_{23}\left(x_{3}-x_{2}\right)^{2}+C_{1}\left(1-2 x_{1}\right)\right] \\
& \quad+x_{2}{ }^{2}\left[B_{12}+C_{12}\left(3 x_{1}-x_{2}\right)+D_{12}\left(x_{1}-x_{2}\right)\left(5 x_{1}-x_{2}\right)\right] \\
& +x_{3}^{2}\left[B_{13}+C_{13}\left(3 x_{1}-x_{3}\right)+D_{13}\left(x_{1}-x_{3}\right)\left(5 x_{1}-x_{3}\right)\right] \tag{15}
\end{align*}
$$

The equations for γ_{2} and γ_{3} are obtained by cyclic rotation of the indices. C_{1} is a ternary constant computed from the ternary data reported in Tables II and III. The binary constants $B_{i j}, C_{i j}$ and $D_{i j}$ are obtained by fitting the binary activity coefficients according to

Table V. Redlich-Kister Correlation of Binary and Ternary Data, Equations 15 and 16

	$B_{i j}$	$C_{i j}$	$D_{i j}$	RMSD	
				γ_{i}	γ_{i}
Water-formic acid	-0.345 22	0.11201	0.05485	0.0433	0.0148
Water--acetic acid	0.76773	0.19463	0.11960	0.1639	0.0462
Water-propionic acid	1.3558	0.51097	0.08217	0.1729	0.6530
Formic acid-acetic acid	-0.199 06	-0.069 325	-0.08390	0.0153	0.0266
Acetic acid-propionic acid	0.07212	-0.190 13	0.19193	0.2013	0.0918
				Overall RMSD	
Water-formic acid-acetic acid	$C_{1}=0.5089$			0.1132	0.03237
	$C_{1}=0$			0.1079	0.03178
Water-acetic acid-propionic acids	$C_{1}=-2.2337$			0.2566	0.03483
	$C_{1}=0$			0.2168	0.04237

Table VI. Correlation of Boiling Points, Equation 18

System	C_{0}	C_{1}	C_{2}	C_{3}	RMSD (eq 20)
Water-Formic Acid					
With ω	28.088	-12.145	-5.3119	7.6118	0.0661
Without ω	28.073	-12.291	-5.6276	7.7589	0.0669
Water-Acetic Acid					
With ω	-15.881	6.1843	-7.7400	7.9182	0.1118
Without ω	-16.010	6.1894	-7.8485	8.1860	0.1131
Water-Propionic Acid					
With ω	-59.645	39.865	-58.845	38.657	0.3248
Without ω	-60.397	41.015	-60.139	39.839	0.3306
Formic Acid-Acetic Acid					
With ω	-5.5167	-1.3462	6.7512	5.5044	0.1057
Without ω	-5.5679	-1.3184	6.7661	5.4946	0.1050
Water-Formic Acid-Acetic Acid					
With ω	23.565	172.53	-49.803	2.9791	0.3893
Without ω	23.021	173.31	-49.664	3.6168	0.3910
Water-Acetic Acid-Propionic Acid					
	A	B	c	D	
With ω	49.896	87.154	-43.481	-3.4788	0.5128
Without ω	48.331	83.104	-39.466	-5.4946	0.5109

Figure 1. Isothermals at 760 mmHg for the water-formic acid-acetic acid systems calculated by eq 18 for $\omega=0$.

$$
\begin{align*}
& \ln \gamma_{i}=\left(B_{i j}+3 C_{i j}+5 D_{i j}\right) x_{j}^{2} \\
& \quad-4\left(C_{i j}+4 D_{i j}\right) x_{j}^{3}+12 D_{i j} x_{j}^{4} \tag{16}\\
& \begin{aligned}
& \ln \gamma_{j}=\left(B_{i j}-3 C_{i j}+5 D_{i j}\right) x_{i}^{2} \\
&+4\left(C_{i j}-4 D_{i j}\right) x_{i}^{3}+12 D_{i j} x_{i}^{4}
\end{aligned}
\end{align*}
$$

The binary constants were computed from the binary data reported in ref 6 and 9 and the various constants are reported in Table V. The overall values of the RMSD (root mean square deviation) were computed by

$$
\begin{equation*}
\operatorname{RMSD}=\left[\left(\sum_{j=1}^{m} \sum_{i=1}^{n}\left(y_{j i, \text { obsd }}-y_{j i, \text { calcd }}\right)^{2}\right) / m n\right]^{1 / 2} \tag{17}
\end{equation*}
$$

and reported in Table V. A similar equation was used for γ. These values give a general indication of the goodness of the correlation to predict compositions in the vapor phase. Additional information is as follows. For the system water-formic acidacetic acid, the mean value of $\left(y_{1,0 b s d}-y_{1, \text { calcd }}\right) / y_{1, \text { obsd }}$ based on 67 data points is 9.1%, for y_{2} and $y_{3} 7.7$ and 7.9%. The worst values are 14,20 , and 20%, respectively, where similar values were obtained for the activity coefficients. For the system water-acetic acid-propionic acid, the mean values of ($y_{1, \text { obsd }}$
$\left.-y_{1, \text { calcd }}\right) / y_{1, \text { obsd }}$ based on 65 data points are 6.0%, for y_{2} and $y_{3} 8.4$ and 16.3%. The worst values are $16.6,58$, and 48%, respectively.

The following equation suggested by the authors (21) was employed to correlate the boiling points vs. concentrations of the ternary mixtures:

$$
\begin{align*}
& T=x_{1} T_{1}^{0}+x_{2} T_{2}^{0}+x_{3} T_{3}^{0}+\omega \\
& +\sum_{i, j=1}^{3}\left[x_{i} x_{j} \sum_{k=0}^{1} C_{k}\left(x_{i}-x_{j}\right)^{k}\right]+x_{1} x_{2} x_{3}\left[A+B\left(x_{1}-x_{2}\right)\right. \\
& \tag{18}\\
& \left.\quad+C\left(x_{1}-x_{3}\right)+D\left(x_{2}-x_{3}\right)+\ldots\right]
\end{align*}
$$

where T^{0} is the boiling point of the pure components in ${ }^{\circ} \mathrm{C}$ and

$$
\begin{equation*}
\omega=\sum_{i=1}^{3} x_{i} \ln \left(y_{i} / x_{i}\right) \tag{19}
\end{equation*}
$$

I is the number of terms in the series expansion of ($x_{i}-x_{j}$), and C_{k} are the binary constants computed from the binary data of ref 18 and 19. A, B, C, and D are ternary constants computed from the ternary data in Tables II and III. The various constants are reported in Table VI as well as the values of the overall root mean square deviation,

$$
\begin{equation*}
\mathrm{RMSD}=\left(\sum^{m}\left(T_{\text {obsd }}-T_{\text {calcd }}\right)^{2} / m\right)^{1 / 2} \tag{20}
\end{equation*}
$$

where m is the number of data points. An empirical analysis based on the values of the RMSD indicate that the term ω in eq 18 may be neglected. Hence the boiling point of the mixture becomes solely a function of the liquid composition which introduces a considerable simplification in vapor-liquid equilibria computations.

By using eq 18, isothermals for both ternary systems were obtained as shown in Figures 1 and 3. The prominent fact which may be concluded from the behavior of the isothermals in Figure 1 is the existence of a ternary saddle point azeotrope in the water-formic acid-acetic acid system. On the other hand, it may be concluded from Figure 3 that the system water-acetic acid-propionic acid does not exhibit a ternary azeotrope. The difference between our ternary data and those measured by Aristovich (1) can be appreciated by considering the identical isothermals $\left(106,107.2^{\circ} \mathrm{C}\right)$ reported in Figure 1. They were based on identical binary data and as seen there is a difference

Figure 2. Determination of the ternary saddle point azeotrope for the water-formic acid-acetic acid system at 760 mmHg .

Figure 3. Isothermals at 760 mmHg for the water-acetic acid-propionic acid system calculated by eq 18 for $\omega=0$.
between the isothermals. The second system, water-acetic acid-propionic acid was also studied by Aristovich (2); however, no comparison could be made with his data as they were not accessible.

In order to determine the coordinates of the ternary azeotrope, Figure 2 was drawn. It is a spatial plot of the region where the azeotropic point might be located. According to the general theorem of Gibbs-Konovalov (11), a ternary system exhibits azeotropic behavior at constant pressure if

$$
\frac{\partial T}{\partial x_{2}}=\frac{\partial T}{\partial x_{3}}=0
$$

This condition is fulfilled in the present case as shown in Figure 2. The temperatures were computed with eq 18 and the constants were directly determined from the present ternary data and the binaries of ref 18 and 19 . Similar calculations were made on the basis of the ternary data of Aristovich (1) with the same binary data. A summary of the computations is given in Table VII and a comparison is made between the computed results and the experimental data for the azeotropic point of Aristovich (1). The following experiment was performed in order to check the validity of the predicted values: Ternary solutions with the calculated compositions were prepared and introduced in the vapor and liquid collectors of the Dvorak and Boublik recirculating still. The system was boiled until equilibrium was achieved. A gas chromatography analysis yielded the equilibrium compositions of the vapor and the liquid reported in Table VII and designated by + . It is seen that the liquid compositions x_{i} deviate from y_{i}; namely, the computed values do not correspond to true azeotropes. On the other hand, it is observed that the azeotropic boiling temperature is very accurately predicted. We checked

Table VII. Comparison between Observed and Calculated Values of the Azeotropic Point for the Ternary System Water-Formic Acid-Acetic Acid

	x_{1}			x_{2}			x_{3}			T, ${ }^{\circ} \mathrm{C}$		
data	Obsd	Caicd	$D,{ }^{\text {a }}$ \%	Obsd	Calcd	D. \%	Obsd	Calcd	D, \%	Obsd	Calcd	D. \%
(1)	0.355			0.49			0.154			107.05		
	$x_{1}=0.36$			$x_{2}=0.4$			$x_{3}=0.16$			107.00		
	$y_{1}=0.36$			$y_{2}=0.46$			$y_{3}=0.16$					
(1)		0.292	17.7		0.457	6.9		0.250	38.4		106.99	0.056
ternary												
$(18,19)$	$x_{1}=0.33$			$x_{2}=0.4$			$x_{3}=0.24$			107.25		
binary	$y_{1}=0.3$			$y_{2}=0.4$			$y_{3}=0.24$					
(Present)		0.442	24.5		0.434	17.6		0.124	19.5		106.98	0.065
ternary												
$(18,19)$	$x_{1}=0.4$			$x_{2}=0.4$			$x_{3}=0.14$			107.07		
binary	$y_{1}=0.3$			$y_{2}=0.4$			$y_{3}=0.14$					
${ }^{\text {a }} D=\left\|x_{i, \text { obsd }}-x_{i, \text { caicd }}\right\| / x_{i, \text { obsd }}$ and similary for $T .{ }^{\text {b }}$ Our experimental check.												

also the azeotropic coordinates of Aristovich (1) by charging the still with the reported compositions. As seen in Table VII our results are slightly different from those of Aristovich (1) and within the experimental error they obey the condition for azeotropic behavior that $x_{i}=y_{i}$.

We believe that our results are more accurate than those reported by Aristovich et al. Aristovich used a set of chemical analyses to determine the composition of the phases in equilibrium and reported that error did not exceed 0.5% for formic acid, 0.8% for acetic acid, and 0.5% for water. On the other hand, we have indicated in the Experimental Section that our gas chromatography analyses were accurate within 0.2%.

Diagrams, such as Figure 1, may be an aid in demonstrating distillation paths. For example, in an ideal differential distillation, a material balance on each species in a multicomponent mixture yields that

$$
\begin{equation*}
\frac{d L}{L}=\frac{d x_{i}}{y_{i}-x_{i}} \tag{21}
\end{equation*}
$$

where L is the number of moles of liquid left in the still. A numerical integration of the above equation from a prescribed feedstock composition, and with the aid of the $y_{i}-x_{i}$ data, provides the distillation path for a ternary system defined by

$$
\begin{equation*}
\frac{\mathrm{d} x_{2}}{\mathrm{~d} x_{1}}=\frac{y_{2}-x_{2}}{y_{1}-x_{1}} \tag{22}
\end{equation*}
$$

which may be conveniently drawn on Figure 1. Such paths, and their proximity to the azeotropic point, might reflect the possibility of separating the acids by distillation. For more detailed information regarding to the aspects of rectification in ternary systems containing binary and ternary azeotropes, the attention of the reader is addressed to ref 7 .

Acknowledgments

Thanks are due to Yehudit Reizner and Moshe Golden for their contribution in the experimental and numerical work, and also to Professor J. Zabicky for the useful discussions concerning some distillation aspects of azeotropic mixtures.

Glossary

A, A_{1} species A, monomer of A
b size parameter
B, B_{1}, species B formed by $B_{1}+B_{2}$, monomer of B, dimer of
$B_{2} \quad B$
C, C_{1}, species C formed by $C_{1}+C_{2}$, monomer of C, dimer of $\mathrm{C}_{2} \quad \mathrm{C}$
$B C$ heterodimer formed by $B_{1}+C_{1}$
D parameters in eq 15, 16, and 18. Local deviation defined in by the eq 11
$E_{i} \quad$ defined by eq 3
$F_{i} \quad$ defined by eq 2

$K_{\text {AA }}$, $K_{B B}$, K_{CC}, K_{BC}	vapor-phase equilibrium constant for the formation of $\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{BC}$, respectively, mmHg^{-1}
m	total number of experimental runs
n	number of species
p	total pressure, mmHg
$P_{i}{ }^{0}$	vapor pressure of the pure species $i(i=A, B, C)$, mmHg
$P_{i 1}{ }^{\circ}$	vapor pressure of the pure monomer of species $i(i=$ $\mathrm{B}, \mathrm{C}), \mathrm{mmHg}$
R	universal gas constant
t, T	temperature ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}$
v	molar volume
x_{i}, y_{i}	stoichiometric mole fraction of species i in the liquid phase, in the vapor phase ($i=\mathrm{A}, \mathrm{B}, \mathrm{C}$)
$y_{j i, \text { calcd }}$	the calculated vapor composition of the ith component in the th experimental run based on values of liquid activity coefficients which were computed from their multicomponent thermodynamic correlation
$\gamma_{\text {A }}$,	overall liquid activity coefficients of a species
γ_{B},	
$\hat{\Phi}$	fugacity coefficient for a component in a mixture
$\begin{gathered} \alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \\ \delta_{\mathrm{i}}, \epsilon_{\mathrm{i}}, \\ \omega_{\mathrm{i}} \end{gathered}$	constants in eq 8 and 9 and Table IV
Δx,	errors in measurements of concentrations, pressure,
Δp	and temperature, respectively
RMSD	root mean square deviation

Subscripts and Superscripts

A, B, C	water-formic acid-acetic acid or acid-propionic acid, respectively
i	species
L	in the liquid phase
calce	\quad calculated
obsd	observed
\max	maximum
0	pure species
1,2	monomer, dimer
$1,2,3$	water, formic acid, and acetic acid or water, acetic
	acid, and propionic acid in eq 15 and 16 and in
	Tables V and $V I$.

Literature Cited

(1) Aristovich, V. Yu., Lutugina, N. V., Malenko, Yu. P., Morachevskii, A. G., Zh. Prikl. Khim (Leningrad), 33, 2693 (1960).
(2) Aristovich, V. Yu., Levin, A. 1., Morachevskii, A. G., Tr., Vses. NauchnoIssled. Inst. Neftekhim Protesessov, No. 5, 84 (1962)
(3) Barton, J. R., Hsu, C. C., J. Chem. Eng. Data, 14, 184 (1969).
(4) Bondi, A., "Physical Properties of Molecular Crystals, Liquids and Glasses", Wiley, New York, N. Y., 1968.
(5) Boublikova, L., Lu, B. C. Y., J. Appl. Chem., 19, 89 (1969).
(6) Chang, S. C., Lu, B. C. Y., Proc. Int. Symp. Distill., 1969, No. 32, 3.25 (1969).
(7) Ewell, R. H., Welch, L. M., Ind. Eng. Chem., 37, 1224 (1945).
(8) McDermott, C., Ellis, S. R. M., Chem. Eng. Sci., 20, 293 (1965)
(9) McDermott, C., Ph.D. Thesis, University of Birmingham, 1964.
(10) Marek, J., Collect. Czech. Chem. Commun., 20, 1490 (1935).
(11) Malesinski, W., "Azeotropy and Other Theoretical Problems of Vapor-Liquid Equilibrium', Interscience, London, N.Y., Sydney, 1965.
(12) Nothnagel, K. H., Abrams, D. S., Prausnitz, J. M., Ind. Eng. Chem., Process

Des. Dev., 12, 25 (1973).
(13) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria", Prentice Hall, Englewood Cliffs, N.J., 1969, p 138.
14) Redlich, O., Kister, A. T., Ind. Eng. Chem., 40, 345 (1948),
(15) Sebastiani, E., Lacquantini, L., Chem. Eng. Sci., 22, 1155 (1967).
(16) Tamir, A., Wisniak, J., Chem. Eng. Sci., 31, 625 (1976)
(17) Tamir, A., Wisniak, J., Ind. Eng. Chem. Fundam., 31, 274 (1976).
(18) Tamir, A., Wisniak, J., Chem. Eng. Sci., 30, 335 (1975).
(19) Tetsuo, I., Fumitake, Y., J. Chem. Eng. Data, 8, 315 (1963).
(20) TRC Tables Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center Data Project, College Station, Texas, 1961.
(21) Wisniak, J., Tamir, A., Chem. Eng. Sci., 31, 631 (1976).

Received for review January 12, 1976. Accepted March 16, 1977

A Crude Oil-Natural Gas System Vapor-Liquid Equilibrium Ratios (Data at $250{ }^{\circ} \mathrm{F}$ and System Containing $20 \% \mathrm{C}_{7+}$)

C. Floyd Wiesepape, H. T. Kennedy, ${ }^{\dagger}$ and Paul B. Crawford*
Texas Petroleum Research Committee, Texas A\&M University, College Station, Texas 77843

Vapor-liquid equilibrium ratios (K values) have been determined experimentally on a Devonian crude oil-nalural gas system containing $\mathbf{2 0} \%$ of the C_{7+} or heavy fraction. The data were obtained at $250^{\circ} \mathrm{F}$ and five pressures.

Some of the new and improved oil recovery methods require use of vapor-liquid equilibrium ratios to estimate the total oil recovery. Woertz provided a recent correlation, and his paper cites sources of vapor-liquid equilibrium ratio data (2). The need for additional experimental data is clearly evident. This paper presents the vapor-liquid equilibrium constants (K values) between a crude oil and natural gas system.

A Devonian crude oil of $40^{\circ} \mathrm{API}$ gravity from New Mexico free of hydrogen sulfide, nitrogen, or carbon dioxide and forming no precipitates when mixed with gas at high pressures was used as the base crude. Hexane-n-pentane, n-butane, propane, ethane gas, and a Texas natural gas were added to form the desired mixture. The mixture was prepared so that it contained $20.06 \% \mathrm{C}_{7+}$ in the total system. The C_{7+} fraction of each system was characterized by measurement of its specific gravity and molecular weight. Sufficient volume of the C_{7+} fraction was not available for ASTM distillation.
The basic apparatus consisted of a Ruska high pressure equilibrium cell in a constant temperature oil bath. Podbielniak low temperature fractional distillation apparatus with an external kettle was used for the analyses. A Hart pressure balance was used for pressure measurements. A high pressure storage cell was used to store the total mixture. See Figure 1. A Ruska mercury pump was used for fluid displacement. The benzene freezing point depression apparatus was equipped with a Beckmann thermometer.

The desired materials were charged into an evacuated rocking mixing cell using displacement with mercury into a fluid storage cell. This formed the total mixture. The mixed sample was displaced into the equilibrium cell located in the oil bath. The sample was expanded to a two-phase condition and rocked until constant pressure achieved. A constant pressure was maintained on the equilibrium sample during displacement of either a gas or liquid phase sample into the Podbielniak low temperature fractional distillation apparatus. An external kettle on the Podbielniak column was used to collect the heptanes-plus residue. The density was determined by weight and volume using a $2.0-\mathrm{mL}$

[^1]Table I. Total Composition of Mixture and Equilibrium Values at 1795 psia, Temperature $250^{\circ} \mathrm{F}$

| | Total
 composition
 mol fraction | Gas
 Component | Lquaid
 frac | K-Value
 Y_{i} / X_{i} |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Methane | 0.4747 | 0.7771 | 0.2885 | 2.6937 |
| Ethane | 0.0651 | 0.0737 | 0.0570 | 1.2938 |
| Propane | 0.0489 | 0.0446 | 0.0532 | 0.8386 |
| n-Butane | 0.0661 | 0.0385 | 0.0833 | 0.4623 |
| n-Pentane | 0.0687 | 0.0283 | 0.0919 | 0.3079 |
| Hexane | 0.0759 | 0.0211 | 0.1087 | 0.1940 |
| Heptanes-plus | $\underline{0.2006}$ | $\underline{0.0167}$ | $\underline{0.3174}$ | 0.0526 |
| | 1.0000 | 1.0000 | 1.0000 | |
| Heptanes-plus: | | | | |
| \quad Mol wt | 181.0 | 105.9 | 182.3 | |
| \quad Sp gr 60/60 | 0.8259 | 0.7314 | 0.8266 | |

pycnometer. The molecular weight of the C_{7+} was determined by the freezing point depression of benzene measured with a Beckmann thermometer.

The pressure is considered to within $\pm 0.08 \%$ using the Hart pressure balance. The average mole fraction deviation in composition analysis on duplicate samples was 0.0036 .

The total composition of the mixture is shown in Table I as well as equilibrium constants at 1795 psia. The equilibrium constant (K value) is the mole fraction of a component in the vapor divided by the mole fraction of the component in the liquid.

The bubble point of this mixture at $250^{\circ} \mathrm{F}$ was found to be 3190 psia. Tables II and III show the equilibrium constants at pressures of $2095,2295,2545$, and 2845 psia and a temperature of $250^{\circ} \mathrm{F}$.

Figure 2 shows a plot of the experimental K-value data as a function of pressure. The NGAA correlations for each component are shown as the solid lines (1). The NGAA K values for the C_{7+} shown plotted were assumed to be the average of heptane and octane K values. The NGAA method was used to calculate the convergence pressure. The critical temperature of the hep-tanes-plus fraction in the overall system was obtained from the plot of the critical temperatures of straight chain paraffin hydrocarbons against molecular weight.

A comparison of these experimental K values with the charts published by Woertz shows the experimental data for methane and ethane to be lower and the experimental data of the heavier components to be higher than the Woertz charts K values. The

[^0]: ${ }^{a}$ From ref 7. ${ }^{\text {b }} \mathrm{RI}=$ refractive index

[^1]: ${ }^{\dagger}$ Deceased.

